Python Machine Learning

Unlock Deeper Insights into Machine Learning with This Vital Guide to Cutting-Edge Predictive Analytics

5 / 1
  • 語言:英文
  • ISBN:9781783555130
  • 頁數:425 頁
  • 出版日期:2015/09/23

Machine learning is transforming the way businesses operate. Being able to understand trends and patterns in complex data is critical to success; it is today one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success.

Python Machine Learning gives you access to the world of machine learning and demonstrates why Python is one of the world’s leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you’ll soon be able to answer some of the most important questions facing you and your organization.

What You Will Learn

Find out how different machine learning can be used to ask different data analysis questions
Learn how to build neural networks using Python libraries and tools such as Keras and Theano
Write clean and elegant Python code to optimize the strength of your machine learning algorithms
Discover how to embed your machine learning model in a web application for increased accessibility
Predict continuous target outcomes using regression analysis
Uncover hidden patterns and structures in data with clustering
Organize data using effective pre-processing techniques
Learn sentiment analysis to delve deeper into textual and social media data
Authors

Sebastian Raschka

Sebastian Raschka is a PhD student at Michigan State University, who develops new computational methods in the field of computational biology. He has been ranked as the number one most influential data scientist on GitHub by Analytics Vidhya. He has many years of experience with coding in Python and he has conducted several seminars on the practical applications of data science and machine learning. Talking and writing about data science, machine learning, and Python really motivated Sebastian to write this book in order to help people develop data-driven solutions without necessarily needing to have a machine learning background.

He has also actively contributed to open source projects and methods that he implemented, which are now successfully used in machine learning competitions, such as Kaggle. In his free time, he works on models for sports predictions, and if he is not in front of the computer, he enjoys playing sports.

    還沒有人寫書評喔,快來寫第一篇書評吧!

會員中心